STABLE CARBENOIDS XLV 1 - LIGAND EXCHANGE BETWEEN (CH₃)₃SiCBr₂Li AND HALOMETHYL-TRIMETHYLSILANES. EVIDENCE FOR TWO COMPETING MECHANISMS

Roland von Nagel and Gert Köbrich

Organisch-chemisches Institut, Universität Heidelberg, 69 Heidelberg, Germany⁺⁾

(Received **in UC 10 October** 1970; **accepted for publication 21** October 1970)

Summary: Reaction of CH_2)₃SiCBr₂Li with CH_3)₃SiCBr₃, CH_3)₃SiCCl₃, $\text{(CH}_3\text{)}_3$ SiCBr₂C_AH_Q, and $\text{(CH}_3\text{)}_3$ SiCHBr₂ produced carbosilanes and Li-carbenoids by either a $[Li/(CH_3)_3S1]$ - or a $[Br/(CH_3)_3S1]$ -exchange.

In the foregoing communication, ¹ a ligand exchange between ε CBr₂Li and $ECBr_3$ (E stands for (CH_3) ₃Si) was reported (eq. (1)). This paper describes ligand exchanges between \texttt{CBr}_2L1 and other halomethyl-trimethylsilanes. It Is shown that two different mechanisms are operative.

$$
ICBr_2LI + ICRr_3 \longrightarrow I_2CRr_2 + LICRr_3 \tag{1}
$$

When $ECBr_2Li$ is treated with n-butyl bromide (or, if $ECBr_2Li$ is prepared from $ECBr₃$ and n-butyllithium instead of phenyllithium ¹), it undergoes coupling to give, surprisingly, a carbosilane ², identified as \texttt{r}_2 CBrC₄H₉ (liquid, n_{D}^{20} = 1.4855), instead of the expected silane, $ECBr_{2}C_{4}H_{9}$. It thus appears, that the formation (eq. (2)) of $ECBr_2C_hH_0$ (which was not detected among the products) 1s followed by a fast llgand exchange with a second carbenoid molecule to give the carbosilane and LiCBr₃ (eq. (3)). The latter was successfully trapped with dry ice (as tribromo acetic acid) or $LC1$ (as $LCBr₃$).

$$
{}^{c}\text{CBr}_{2}L1 \quad + \quad C_{\mu}H_{Q}Br \qquad \frac{\text{slow}}{\text{slow}} \rightarrow \ ^{c}\text{CBr}_{2}C_{\mu}H_{Q} \tag{2}
$$

$$
z \, \text{CBr}_2 \text{Li} + z \, \text{CBr}_2 \text{C}_4 \text{H}_9 \quad \frac{\text{Br}/z}{\text{fast}} + z_2 \text{CBr} \text{C}_4 \text{H}_9 + \text{L1CBr}_3 \tag{3}
$$

Present address: Organisch-chemisches Institut, Technische Universität Hannover, 3 Hannover, Germany. 4697

Eq. (3) undoubtedly describes an exchange between a bromo atom of $\texttt{ICBr}_2\texttt{C}_{\texttt{A}}\texttt{H}_{\texttt{O}}$ and the trimethylsilyl group of the carbenoid (symbolized: $[\texttt{Br}/\texttt{E}]$). This type of llgand exchange seems to have no precedent in the literature. The question arises, whether eq. (1) also entails a $\left[Br/\mathcal{E}\right]$ -exchange or whether a \lceil Li/I]-exchange is involved, i.e.: the well-known displacement of halomethyl **anions from sllanes 3. A substrate which should give different products from** the two reactions is z_{CCL_3} ⁴ (prepared in 54% yield from LiCCl₃⁵ and z_{CL_3} m.p. 133-134⁰). ECCl₃ and ICBr₂L1 underwent a quantitative reaction in less than 1 hour at -110^o to yield, exclusively, the products from a $[i_1/z]$ exchange (eq. (4)); no $\lceil \frac{C1}{L} \rceil$ -exchange 6 was observed (eq. (5)). Thus a $\lceil L1/\mathbb{E}\rceil$ -exchange might also be involved in eq. (1).

$$
ECHr_2Li + ECl_3 \longrightarrow E_2CHr_2 + LICCl_3
$$
\n
$$
E_2Cl_2 + LICBr_2Cl
$$
\n
$$
E_2Cl_2 + LICBr_2Cl
$$
\n(5)

However, we find that $[Br/\mathbb{E}]$ -exchange is able to compete with the \lceil L1/I]-exchange. Thus, treatment of ICBr₂L1 with pure ICHBr₂⁷ (prepared in 70%) yield from LiCHBr₂ 8 and 2 Cl, n_0^{20} = 1.4995) as well as the methanolysis of pure $ECBr_2Li$ suspensions, leads to the products shown in eq. (6) and (7) (z_2 CHBr was identified with a sample obtained by methanolysis of z_2 CBrLi and isolated by preparative v.p.c. as a liquid of 97% purity, $n_D^{20} = 1.4693$; NMR $(in CC1_h): \tau$ 7,85 (1 H) and 9,84 (18H)).

The rate ratio $k_{(6)}$: $k_{(7)}$ (found between 0,6 and 3) depends upon the Initial concentration of the substrates. Reaction (7), which is favoured in more dilute mixtures, is reasonably Interpreted as the normal displacement, but a $[H/\Sigma]$ -exchange can not be excluded at present.

---c E2CHBr l LICBr3 (6) ECBr2LI + rCHBr2 K2CBr2 + LiCHBr2 (7)

Our results clearly demonstrate two different exchange mechanisms, but it is uncertain which one is operating in reaction (1). Further research is in progress In an effort to solve this problem and to reveal the factors which control the two mechanisms. Steric requirements, the formation tendency of carbosllanes, and the baslcitles of the reacting and resulting carbenoids all appear to play an important role.

We thank the Deutsche Forschungsgemelnschart and the Ponds der Chemlschen Industrie for financial support of this work.

References:

1 Part XLIV: G. Köbrich and R.v.Nagel, Tetrahedron Lett., 1970, preceding paper.

2 Cf. G. Fritz, J. Grobe and D. Kummer, Adv. Inorg. Radiochem., 7, 349 (1965).

- 3 H. Gllman, A.G. Brook, and L.S. Miller, J. Amer. Chem. Sot., 75, 4531 (1953); G.E. Coates, M.L.H. Green, P. Powell, and K. Wade, Principles of Organometallic Chemistry, p. 133, Methuen & Co. London, 1968.
- 4 W.R. Bamford and B.C. Pant, J. Chem. Soc. (C), 1967, 1470.
- 5 0. Kgbrlch, K. Flory, and W. Drischel, **Anger. Chem., 76,** 536 (1964); G. Köbrich, K. Flory, and R.H. Fischer, Chem. Ber., 99, 1793 (1966).
- 6 Cf. G. Kbbrlch and R.H. Fischer, Chem. Ber.. 101, 3219 (1968).
- 7 H. Normant and J. Villiéres, Compt. rend., 260, 4535 (1965); J. Villiéres, Bull. Sot. Chim. France, 1967, 1520.
- 8 G. Köbrich and R.H. Fischer, Chem. Ber., 101, 3208 (1968).